

100X My DNA Food Functional Report

Health Report

REPORT CATEGORIES —

MENTAL HEALTH

COGNITION

NUTRITION

FOOD SENSITIVITIES

HEART & BLOOD VESSELS

SLEEP

INFLAMMATION & AUTOIMMUNITY

WEIGHT & BODY FAT

DETOX

LONGEVITY

FITNESS

Sample Client

Report date: 28 July 2025

Powered by Somicsedge

Table of Contents

03 Summary

04 Overview of Your Results

05 Recommendations Overview

06 Your Results in Details

06 Nutrition

17 Food Sensitivities

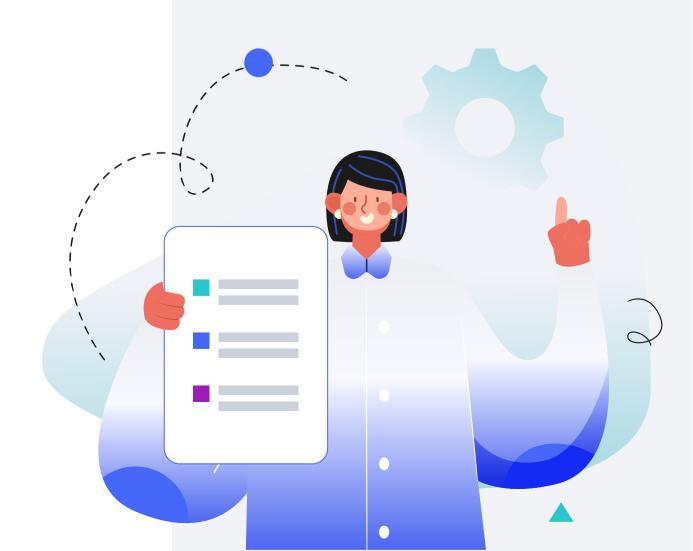
21 Recommendations Details

Personal information

NAME

Sample Client

SEX AT BIRTH


Male

HEIGHT

5ft 9" 175.0cm

WEIGHT

165lb 75.0kg

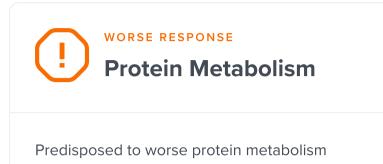
DISCLAIMER

This report does not diagnose this or any other health conditions. Please talk to a healthcare professional if this condition runs in your family, you think you might have this condition, or you have any concerns about your results.

Summary

Genetic factors play a significant role in how our bodies respond to lifestyle choices and environmental influences, affecting nutritional and dietary preferences. Understanding these genetic predispositions can provide valuable insights into individual variations in nutrient metabolism, increased needs for certain nutrients, food sensitivities, and more.

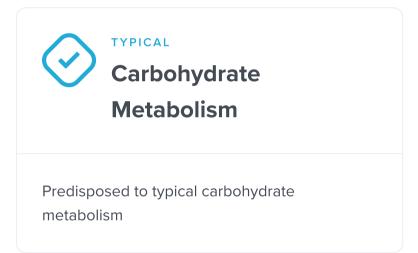
This genetic information can help inform personalized approaches to diet, supplementation, and lifestyle modifications. By understanding individual genetic variations, you can make more informed decisions about wellness strategies, optimizing them for your unique genetic profile in consultation with healthcare providers.

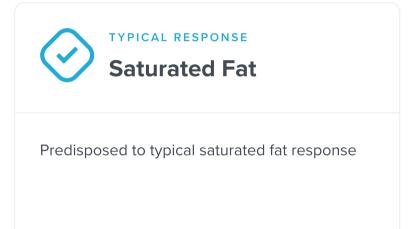

This summary report contains:

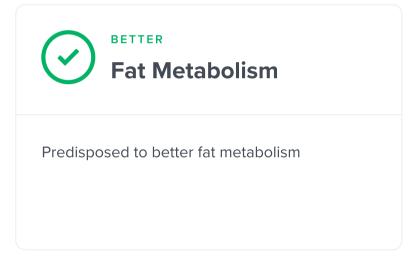

Genetic Results 9

Recommendations **27**

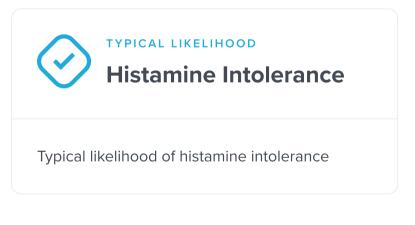

Overview of Your Results

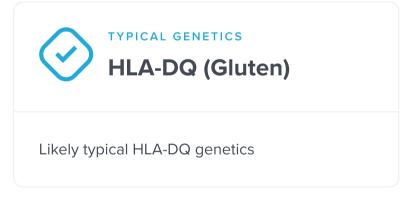

Nutrition





triglycerides





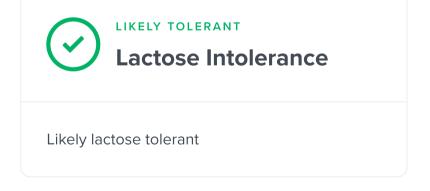


TABLE OF CONTENTS SKIP TO NEXT SECTION \rightarrow **PAGE 4** / 30

Recommendations Overview

Your recommendations are prioritized according to the likelihood of it having an impact for you based on your genetics, along with the amount of scientific evidence supporting the recommendation.

You'll likely find common healthy recommendations at the top of the list because they are often the most impactful and most researched.

	DOSAGE		DOSAGE
1 Dietary Protein		2 Limit Protein Intake	
3 Mediterranean Diet		4 Limit Saturated Fat	
5 Cognitive Activity	15 minutes	6 Avoid Air Pollution	
7 Omega-3 (Fish Oil)	500 mg	8 Carnosine And Anserine	1 g
9 Dietary B Vitamins		10 Maintain Optimal Vitamin D Levels	1000 iu
11 Low-Carbohydrate Diet		12 Lactose-Free Diet	
13 Bifidobacterium Longum	10 billion CFU	14 Kefir	
15 Lactobacillus Acidophilus	10 billion CFU	16 Lactobacillus Delbrueckii 10 b	pillion CFU
Lactobacillus Delbrueckii and S. Thermophilus	10 billion CFU	18 Lactobacillus Reuteri 10 b	pillion CFU
19 Probiotics	30 billion CFU	20 Streptococcus Thermophilus 10 kg	pillion CFU
21 Bifidobacterium Animalis Subsp. Lactis	10 billion CFU	22 DAO Enzyme	
23 Forskolin	500 mg	24 Low-Histamine Diet	
25 Quercetin	200 mg	26 Avoid High-Fat Diets	
27 Gluten-Free Diet			

TABLE OF CONTENTS

PAGE 5 / 30

Your Results in Details

Nutrition

Genetic variations significantly influence how individuals process and utilize different nutrients. This section explores genes affecting carbohydrate, fat, and protein metabolism. From TCF7L2's role in carbohydrate processing to APOE's influence on fat metabolism, understanding these genetic factors can help inform personalized nutritional strategies.

Predisposed to worse protein metabolism

Predisposed to typical effects of omega-3s on triglycerides

You carry two APOE £3 variants

Predisposed to typical carbohydrate metabolism

Predisposed to typical saturated fat response

Fat Metabolism

Predisposed to better fat metabolism

Protein Metabolism

Some people do better on low- and others on high-protein diets. Your genes may affect your response to protein. Specifically, genes that affect your response to protein may also influence [R, <u>R</u>, <u>R</u>, <u>R</u>]:

- Body weight
- Food preference
- Metabolism

In people with a better response to dietary protein, higher amounts of protein in a diet may improve weight control and metabolism. On the other hand, high-protein diets may have adverse metabolic effects in people with a worse response [R, R]<u>R</u>, <u>R</u>].

However, other variants and environmental factors may also influence your dietary protein response. Try to get most of your protein from healthy sources such as legumes, poultry, and fish.

Predisposed to worse protein metabolism based on 17 genetic variants we looked at

Your top variants that most likely impact your genetic predisposition:

GENE	SNP	GENOTYPE
FTO	rs9939609	тт
FTO	rs1558902	тт
GLP1R	rs6923 7 61	GG
CNDP2	rs4891558	тт
NADSYN1	rs12785878	GG
MTNR1B	rs10830963	CG
FUCA1	rs3123554	AG
NTN5	rs 838147	AG
CLOCK	rs3749474	тс
ADRB3	rs 4994	AA
ST6GAL1	rs1501299	GG
TFAP2B	rs 987237	AA
CNDP1	rs 7244647	тт
TNF	rs1800629	GG

Effects Of Omega-3s On **Triglycerides**

Genetic studies revealed why omega-3 supplements may work better for some people than others. They identified key genetic variants influencing individuals' response to fish oil supplementation [R, R, R, R].

The studies found that variants in several genes - particularly GJB2, SLC12A3, ABCA6, MLXIPL, and APOE - affect how blood lipid levels change in response to fish oil [R, R, R].

Additionally, researchers developed a genetic risk score based on multiple variants that could partly predict which individuals would respond positively to fish oil supplementation. This suggests that genetic testing could help determine whether omega-3 supplements benefit a given individual [R].

These findings point toward more personalized approaches to nutrition, where genetic profiles could guide supplementation recommendations. However, the researchers note that additional studies are needed to fully validate these genetic markers across different populations and dosing protocols.

Predisposed to typical effects of omega-3s on triglycerides based on 25 genetic variants we looked at

Your top variants that most likely impact your genetic predisposition:

GENE	SNP	GENOTYPE
SIK3	rs144018203	GG
SLIT2	rs 2952724	СС
TADA2A	rs1714987	СС
APOE	rs 7412	СС
ALDH8A1	rs 6920829	СТ
IQCJ	rs61332355	CA
GJB2	rs112803755	AA
IQCJ	rs2621308	GT
JADE1	rs1216352	тс
IQCJ	rs1449009	AG
NELL1	rs 752088	AG
PLA2G4A	rs1569480	AG
CD36	rs1761667	AG
CD36	rs1984112	AG
JADE1	rs931681	GA
JADE1	rs1216365	GT
MAU2	rs141844019	СС
BAZ1B	rs117788606	TT
LPL	rs142084074	GG
NXPH1	rs 6463808	GG
MAP1A	rs 55707100	СС
DDX39B	rs909253	AA
NT5C3B	rs8071753	GG

APOE

Key Takeaways:

- If you carry one or both £4 variants, your risk for Alzheimer's disease may be higher.
- The risk is greatest for late onset (after age 65) Alzheimer's disease.
- Even if your risk is higher due to the **£4** variants, numerous other factors from your environment to lifestyle to other genetic variants impact overall risk.
- People with both variants may never get Alzheimer's, and some who have neither variant can get the disease.

There are three major forms (variants) of the *APOE* gene. These are called $\epsilon 2$, $\epsilon 3$, and $\epsilon 4$. You can have two copies of the same variant or two different variants [R, R].

- ϵ 2, ϵ 3, and ϵ 4 change the shape of the ApoE protein. This can impact how well ApoE functions [R, R].
- $\epsilon 3$ is the most common variant. It makes a protein that is good at clearing plaque from the brain and fats from the blood. Most people have two $\epsilon 3$ variants and a typical risk of Alzheimer's disease [R].
- $\epsilon 4$ is less common. It makes a protein that is not as good at clearing plaque from the brain and fats from the blood. $\epsilon 4$ has been linked to a higher risk of Alzheimer's disease and artery hardening [R, R].
- $\epsilon 2$ is another less common variant. It makes a protein that is better than $\epsilon 3$ at removing plaque from the brain, but not as good at removing fats from the blood. $\epsilon 2$ has been linked to a lower risk of Alzheimer's disease [R, R, R].

However, it has also been linked to a higher risk of artery hardening in people with two $\varepsilon 2$ variants and an underlying chronic health condition, such as obesity or diabetes [R, R, R].

Did you know? The $\varepsilon 4$ variant was much more common among ancient hunter-gatherers. Scientists suggest this variant might have improved their [R]:

You carry two APOE £3 variants based on the genetic variants we looked at

Your top variants that most likely impact your genetic predisposition:

GENE	SNP	GENOTYPE
APOE	rs 7412	СС
APOE	rs 429358	тт

- Inflammatory response to germs in the wilderness
- Vitamin D status in less sunny European areas
- Aerobic endurance, crucial for a hunter-gatherer lifestyle

As humans largely switched to farming, some effects of this variant became useless or even harmful. For this reason, evolution strongly favored the $\mathbf{\epsilon}\mathbf{3}$ variant in ancient farmers and their modern descendants $[\mathbf{R}]$.

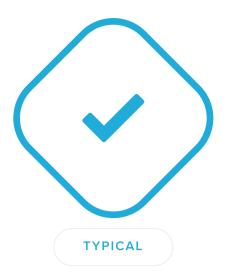
TABLE OF CONTENTS

Carbohydrate Metabolism

For much of our history, we were all nomadic hunter- gatherers. We ate what we could find: roots, plants, berries, nuts, fish, and meat. This varied by location, climate, and season. At this point in time, the way the body processed and responded to complex carbs wasn't very relevant [R, R].

About 12,000 years ago, farming changed that. Suddenly, there were more starchy foods such as grains in our diets. More carbs meant more readily available energy. But this also meant more blood sugar spikes and a higher risk of metabolic disorders. Luckily, variants in genes like <u>TCF7L2</u> allowed us to process these new food sources in a more productive, less harmful way [R].

The *TCF7L2* gene affects insulin release after eating foods like grains. It is one of the genes most strongly associated with diabetes. Depending on which variant of this gene you carry, your body may respond differently to carbs [R].


The "farmer" variant ($\underline{rs7903146}$ -C) is linked to a better response to carbs. In people with this variant, carbs don't tend to spike blood sugar. The "hunter-gatherer" variant ($\underline{rs7903146}$ -T) is linked to a worse response to carbs [\underline{R} , \underline{R} , \underline{R}].

Other variants also shape our genetic predisposition to carbohydrate metabolism. They include:

- PPARG <u>rs1801282</u>-G: linked to better metabolism and longevity markers on a low-carb diet [R, R, R]
- FTO <u>rs9939609</u>-A: linked to obesity, especially on a high-carb diet [R, R]
- IRS1 <u>rs2943641</u>-C: linked to better carb metabolism (mixed evidence) [R, R, R]
- CETP <u>rs5883</u>-T and <u>rs3764261</u>-C: linked to lower obesity rates and better metabolic profiles on a low-carb/high-fat diet [R, R]

Additional variants that may have a smaller or indirect impact on carb metabolism include:

 ADIPOQ -11391 G>A (rs17300539): Associated with alterations in adiponectin levels, which can influence glucose and carbohydrate metabolism.

Predisposed to typical carbohydrate metabolism based on 16 genetic variants we looked at

Your top variants that most likely impact your genetic predisposition:

GENE	SNP	GENOTYPE
TCF7L2	rs 7903146	СТ
AMY2B	rs4244372	AT
IRS1	rs2943641	тс
TAS1R2	rs35874116	тт
SLC2A2	rs 5400	GG
FTO	rs1121980	GG
ADRB2	rs1042714	GC
ANKK1	rs1800497	GA
LEPR	rs1137101	AG
FTO	rs9939609	тт
PPARG	rs1801282	СС
CETP	rs 5883	СС
NLRC5	rs3764261	AA
FABP2	rs1799883	СС
ADRB3	rs4994	AA
PPARG	rs3856806	СС
RFC4	rs17300539	GG

- ADRB2 Gln27Glu C>G (rs1042714): Linked to differences in β 2-adrenergic receptor function, which may affect glucose uptake and metabolism.
- **DRD2 C>T** (rs1800497): Linked to dopamine receptor function, which may influence eating behaviors (sugar and carb cravings) and glucose regulation.
- TAS1R2 Ile191Val G>A (rs35874116): Impacts the sweet taste receptor, potentially influencing sugar intake and carbohydrate metabolism.
- **SLC2A2 Thr110lle C>T** (rs5400): Affects glucose transporter 2 (GLUT2), which is key in glucose sensing and carbohydrate metabolism (linked to higher sugar intake but better metabolism!)

Saturated Fat

Some people may tolerate more saturated fat than others. This difference may be genetic. If they eat a lot of saturated fats, people who are sensitive to saturated fat may have a higher risk of $[\underline{R}, \underline{R}, \underline{R}]$:

- Elevated cholesterol
- Weight gain
- Reduced bone strength

Predisposed to typical saturated fat response based on 42 genetic variants we looked at

Your top variants that most likely impact your genetic predisposition:

GENE	SNP	GENOTYPE
TLR4	rs5030728	GG
PPARA	rs135549	тт
APOA1	rs670	СС
ABCA1	rs2230806	СС
TCF7L2	rs 7903146	СТ
SIDT2	rs5070	GG
FTO	rs1121980	GG
SIDT2	rs2854117	СС
APOE	rs 429358	тт
ADAM10	rs2070895	GG
STAT6	rs1799986	СТ
CETP	rs5882	AG
АРОВ	rs 693	AG
FTO	rs1558902	тт
FTO	rs1421085	тт
FTO	rs17817449	тт
STAT3	rs2293152	GC
LPL	rs13702	тс
AHSG	rs4917	СТ
CD36	rs1984112	AG
CLOCK	rs1801260	AG
CLOCK	rs4580704	СС
PKDREJ	rs4253778	GC
PEX11A	rs894160	СТ
FCER1G	rs5082	AA
PPARG	rs1801282	СС
PCSK7	rs662799	AA

GENE	SNP	GENOTYPE
FTO	rs9939609	тт
AGT	rs699	GG
ACE	rs4343	AA
APOC1	rs405509	GG
ADAM10	rs1800588	СС
PPARA	rs1800206	СС
MED24	rs1568400	тт
PPARG	rs10865710	GG
SIDT2	rs 964184	СС
STAT3	rs 8069645	AA
STAT3	rs 744166	AA
APOE	rs 7412	СС
PPARG	rs3856806	СС
LPL	rs328	СС
MC4R	rs12970134	GG
LPL	rs1121923	GG
STAT3	rs1053005	тт

Fat Metabolism

Your genes may affect your response to different levels of fat in a diet. Some people do better on a high-fat diet, and others on a low-fat diet, in terms of weight control and cholesterol levels [R, <u>R</u>].

Some of the genes responsible may also influence [R, R, R]:

- Fat metabolism
- Sugar metabolism
- Inflammation

Talk to your doctor before making big changes to your diet. Keto and other high-fat diets may increase the risk of some nutrient deficiencies. They may also affect the body's response to medication [R].

Predisposed to better fat metabolism based on 53 genetic variants we looked at

Your top variants that most likely impact your genetic predisposition:

GENE	SNP	GENOTYPE
ADRB3	rs 4994	AA
TCF7L2	rs 7903146	СТ
PPARA	rs135549	тт
APOA1	rs670	СС
ABCA1	rs2230806	СС
MC4R	rs2229616	СС
GIPR	rs2287019	СС
ACSL5	rs 2419621	СС
STAT3	rs2293152	GC
STAT6	rs1799986	СТ
CETP	rs5882	AG
MTTP	rs1800591	TG
AHSG	rs4917	СТ
CD36	rs1984112	AG
CLOCK	rs1801260	AG
PEX11A	rs894160	СТ
APOB	rs693	AG
IRS1	rs2943641	TC
CLOCK	rs3749474	TC
LPL	rs328	СС
LPL	rs1121923	GG
TLR4	rs5030728	GG
CLOCK	rs4580704	СС
APOA4	rs 5110	СС
SIDT2	rs5070	GG
FABP1	rs2241883	тт
UCP3	rs1800849	GG

GENE	SNP	GENOTYPE
TCF7L2	rs12255372	GT
LPL	rs13702	тс
FCER1G	rs 5082	AA
PPARG	rs1801282	СС
FTO	rs9939609	тт
PCSK7	rs662799	AA
FABP2	rs1799883	СС
RFC4	rs17300539	GG
APOC1	rs405509	GG
SIDT2	rs964184	СС
STAT3	rs8069645	AA
STAT3	rs744166	AA
APOE	rs 7412	СС
CETP	rs 708272	AA
AGT	rs699	GG
APOE	rs429358	тт
PPARG	rs3856806	СС
NSMAF	rs3808607	тт
MICB	rs361525	GG
ADAM10	rs2070895	GG
TNF	rs1800629	GG
ADAM10	rs1800588	СС
PPARA	rs1800206	СС



Food Sensitivities

Genetic factors play a crucial role in how individuals respond to various foods and compounds. This section examines genetic variants associated with common food sensitivities, including lactose intolerance and histamine sensitivity, offering insights into individual dietary tolerance patterns.

Typical likelihood of histamine intolerance

Likely lactose tolerant

Histamine Intolerance

Histamine is broken down by two enzymes called **DAO** and **HNMT**. DAO is the main enzyme that breaks down histamine in the gut. HNMT deactivates histamine within cells [R, R].

Scientists currently think that DAO deficiency likely plays a more significant role in histamine intolerance related to dietary histamine. The gene that helps make DAO is called $\underline{AOC1}[R, R]$.

On the other hand, HNMT is more responsible for breaking down the histamine created by our body. Different \underline{HNMT} gene variants have been linked to histamine-related conditions, such as [R, R, R, R]:

- Allergies
- Asthma
- Eczema
- Migraines
- ADHD

While genetic variants can influence histamine levels, research suggests that variants alone are probably **not sufficient** to cause full-blown histamine intolerance. Various environmental factors also play a key role [R].

Some of the factors that may contribute to histamine intolerance include [R, R, R, R, R, R, R]:

- Gut damage and inflammation (e.g., due to inflammatory bowel disease (IBD), gluten sensitivity, lactose intolerance, chemotherapy, etc.)
- Alcohol consumption
- Certain medications, such as some antibiotics and stomach acid blockers
- Underlying imbalances in the gut bacteria
- Consumption of foods containing high levels of biological *amines*, chemicals similar to histamine

Typical likelihood of histamine intolerance based on 11 genetic variants we looked at

Your top variants that most likely impact your genetic predisposition:

GENE	SNP	GENOTYPE
AOC1	rs1049793	GC
AOC1	rs1049748	СТ
AOC1	rs2071517	AG
AOC1	rs2071514	AG
HNMT	rs1050891	GA
HNMT	rs2071048	СТ
AOC1	rs10156191	СС
AOC1	rs 2268999	AA
AOC1	rs2052129	GG
HNMT	rs11558538	СС
AOC1	rs1049742	СС

HLA-DQ (Gluten)

Different alleles in these genes can produce different types of HLA-DQ structures. The **DQ2** type (especially the DQ2.5 subtype) is present in up to 98% of celiac disease patients, depending on the population. That is among the strongest known links to autoimmunity in the entire HLA system [R, R].

Two alleles — DQA1*0501 and DQB1*0201 — form the DQ2.5 haplotype, which codes for the DQ2.5 receptor on white blood cells. The DQ2.5 receptor binds gluten and presents it to Thelper cells, initiating widespread gut inflammation [R, R].

The 'T' variant of <u>rs2187668</u> serves as a genetic marker — it tags the DQ2.5 haplotype with high precision. In other words, the vast majority of people with this allele will have this haplotype. A study of over 27,000 subjects identified this SNP as the primary genetic factor for celiac disease. People carrying the 'T' allele had over six times higher chances of being diagnosed with celiac disease. A smaller trial of 889 participants came to a similar conclusion [R, R].

The 'C' variant of rs74541084 tags the DQ8 haplotype, an additional marker for gluten sensitivity in people who don't carry DQ2.5.

Please note: this report only analyzes the HLA-DQ gene. Variants in many other genes have shown associations with gluten sensitivity.

Likely typical HLA-DQ genetics based on the genetic variants we looked at

Your top variants that most likely impact your genetic predisposition:

GENE	SNP	GENOTYPE
HLA-DQB1	rs2858331	AA
HLA-DQA1	rs2187668	СС
HLA-DQA2	rs 7454108	тт

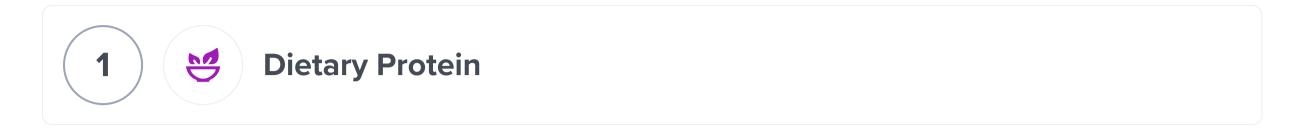
Lactose Intolerance

Lactose intolerance means a person cannot digest lactose, a sugar found in dairy. To be able to digest lactose, you need an enzyme called *lactase*. People with lactose intolerance may experience symptoms such as diarrhea, stomach cramps, nausea, bloating, and gas after eating dairy [R, R].

In people who are lactose intolerant, the gene that makes the enzyme lactase—<u>LCT</u>—gets "turned off" in adulthood. Without this enzyme, people may have trouble digesting dairy as adults [<u>R</u>, <u>R</u>].

A common variant near the LCT gene (rs4988235 'A') is responsible for keeping the lactase enzyme "turned on." This variant is responsible for lactose tolerance in most people who are able to digest milk as adults. The 'T' allele of rs182549 has the same effect. Because these variants are usually inherited together, you will most likely have both variants or neither of them [R, R].

It's important to note that there are also other less common variants linked to lactose tolerance that we are not including in this report [R, R]. In addition, the way people respond to dairy may also depend on factors like diet, gut bacteria, and certain health conditions.


Likely lactose tolerant based on the genetic variants we looked at

Your top variants that most likely impact your genetic predisposition:

GENE	SNP	GENOTYPE
LCT	rs 4988235	AG

Recommendations Details

Include a variety of protein sources such as meat, fish, eggs, dairy, beans, and nuts in your diet every day, aiming for at least 0.8 grams of protein per kilogram of body weight. For more active individuals or those looking to build muscle, increase intake to 1.2 to 2.0 grams per kilogram of body weight daily, spread out over all meals to maximize absorption.

Helps with these Symptoms & Conditions:

Hair Loss

Helps with these Goals:

Helps with these DNA Risks:

How it helps

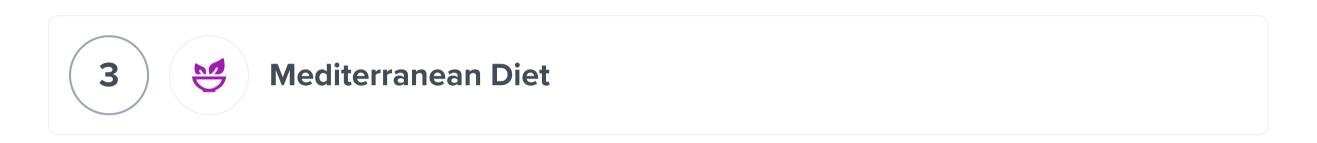
Protein is essential for building and repairing tissues, supporting muscle growth, and maintaining overall bodily functions. Adequate protein intake is crucial for overall health and well-being.

While everyone should try to get enough high-quality protein, your precise needs depend on different factors, including genetics. Some people may particularly benefit from the effects of protein on muscle growth and metabolic health.

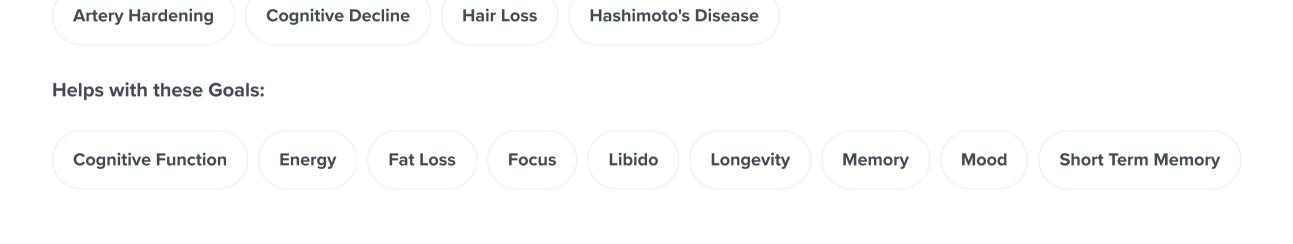
Limit your daily protein intake to 0.8 grams per kilogram of your body weight. For example, if you weigh 70 kilograms (about 154 pounds), aim to consume no more than 56 grams of protein per day. Adjust this goal based on your activity level and health status, reducing intake further if advised by a healthcare professional.

=

Helps with these DNA Risks:



How it helps


Too much protein from certain animal sources may increase the risk of bone, kidney, and metabolic issues in some people [R, R, R].

Your ability to handle dietary protein partly depends on genetics. Some people may need to limit their protein intake, especially from red and processed meat, to avoid adverse health effects.

Incorporate a variety of primarily plant-based foods, such as fruits, vegetables, whole grains, nuts, and legumes, into every meal. Choose healthy fats, like olive oil, over saturated fats and consume fish and poultry at least twice a week. Limit red meat to a few times a month and include a moderate amount of dairy products. Opt for water and red wine in moderation as your beverages.

Helps with these Symptoms & Conditions:

Reduce your intake of saturated fats by choosing lean cuts of meat, opting for low-fat or fat-free dairy products, and using cooking oils high in unsaturated fats (like olive or canola oil) instead of butter or lard. Aim to keep saturated fat to less than 10% of your total daily calories. For someone consuming 2000 calories a day, this means 20 grams or less of saturated fat per day.

Helps with these Symptoms & Conditions:

Artery Hardening

=

Helps with these Goals:

Fat Loss

Cognitive Activity

Engage in mentally stimulating activities, such as puzzles, reading, or learning a new skill, for at least 15 minutes daily. Consistency is key, so incorporate these activities into your daily routine for ongoing cognitive health benefits.

TYPICAL STARTING DOSE

15 minutes

Helps with these Symptoms & Conditions:

Cognitive Decline

Helps with these Goals:

Cognitive Function

Memory

Short Term Memory

Avoid Air Pollution

Stay indoors on days when air quality indexes (AQI) indicate high pollution levels, which are often reported by weather services or government environmental agencies. **Install air purifiers** in your home, especially in bedrooms, to reduce indoor pollutants. Limit outdoor exercise when air pollution warnings are issued, opting for indoor activities instead.

Helps with these Symptoms & Conditions:

Cognitive Decline

Helps with these Goals:

Cognitive Function

Longevity

Mood

Omega-3 (Fish Oil)

Take 1-2 g of omega-3 (fish oil) supplement daily, preferably with a meal to enhance absorption.

TYPICAL STARTING DOSE

500 mg

Helps with these Symptoms & Conditions:

100X My DNA Food Functional Report Health Report

Artery Hardening Cognitive Decline

Helps with these Goals:

Focus Longevity Memory Mood Strength

8

Carnosine And Anserine

Take a combined dose of 1 to 1.5 grams of carnosine and anserine supplements daily. Divide this total dose into two smaller doses to take in the morning and evening. Continue this supplementation daily for at least 8 to 12 weeks to observe benefits.

TYPICAL STARTING DOSE

1 g

Helps with these Symptoms & Conditions:

Cognitive Decline

Dietary B Vitamins

Incorporate foods rich in B vitamins like whole grains, meat, eggs, dairy products, leafy green vegetables, beans, peas, and nuts into your daily meals. For a balanced intake, aim to include at least one serving of a B vitamin-rich food in each meal throughout the day.

Helps with these Symptoms & Conditions:

Cognitive Decline Hair Loss

Helps with these Goals:

Energy

Mood

Maintain Optimal Vitamin D Levels

Check your vitamin D levels, they should ideally be in the 30-66 ng/mL range. If your levels are lower than that, take a vitamin D supplement, 1000-4000 IU daily, to reach an optimal range.

TYPICAL STARTING DOSE

1000 iu

Helps with these Symptoms & Conditions:

Artery Hardening Cognitive Decline Food Allergies Hair Loss Hashimoto's Disease Underactive Thyroid

Helps with these Goals:

Cognitive Function Energy Focus Libido Longevity Mood Strength

11

Low-Carbohydrate Diet

Limit your daily intake of carbohydrates to less than 26% of your total daily calories. For a standard 2000-calorie diet, this means consuming no more than 130 grams of carbohydrates per day. Focus on including non-starchy vegetables, lean proteins, and healthy fats in your meals while minimizing the intake of sugars, bread, pasta, and other high-carb foods.

Helps with these Symptoms & Conditions:

Underactive Thyroid

Helps with these Goals:

Fat Loss

12

Lactose-Free Diet

Eliminate all food and drinks containing lactose from your diet. This includes milk, cheese, yogurt, and products with milk-based ingredients. Read labels to check for lactose and opt for lactose-free versions of these products or use alternatives like almond, soy, or oat milk and their derived products.

Helps with these Symptoms & Conditions:

Underactive Thyroid

Bifidobacterium Longum

Take a Bifidobacterium longum supplement daily, with a typical dosage around 10 billion colony-forming units (CFUs). It can be consumed any time of day, but taking it with a meal might improve its absorption and effectiveness. Continue this regimen for at least 4 weeks to assess its benefits on digestive health.

TYPICAL STARTING DOSE

10 billion CFU

Helps with these Symptoms & Conditions:

Food Allergies

Helps with these Goals:

Cognitive Function

Focus

Memory

Short Term Memory

Kefir

Incorporate kefir into your daily diet by drinking approximately 1-2 cups (240-480 ml) per day. It can be consumed on its own, blended into smoothies, or used as a base for salad dressings or soups. Continuous consumption over several weeks is recommended to observe its health benefits.

Helps with these Goals:

Mood

Lactobacillus Acidophilus

Take a probiotic supplement containing Lactobacillus acidophilus. Look for products that offer around 10 billion CFUs (colony-forming units) and take it once daily, preferably on an empty stomach, either first thing in the morning or right before bed.

10 billion CFU

Helps with these Goals:

Fat Loss

Lactobacillus Delbrueckii

Take a supplement containing Lactobacillus delbrueckii at a dosage as advised on the product packaging, usually once daily. It is typically found in probiotic supplements or dairy products enriched with probiotics. Consistency is key, so take it at the same time each day, preferably with a meal for the best absorption and efficacy.

TYPICAL STARTING DOSE

10 billion CFU

Helps with these Goals:

Energy

Lactobacillus Delbrueckii and S. Thermophilus

Take a probiotic supplement that contains Lactobacillus delbrueckii and Streptococcus thermophilus. Follow the dosage instructions on the product label, typically once daily, preferably with meals or as directed by your healthcare provider. Continue this regimen for at least 4 to 8 weeks to evaluate its effects.

10 billion CFU

Lactobacillus Reuteri

Take a supplement containing Lactobacillus reuteri daily, ideally choosing a product that specifies CFU (colony-forming units) to ensure you receive an effective dose. Dosage can vary depending on the specific product, but it's typically around 10 billion CFUs. Continue taking the supplement for at least 4 to 8 weeks to evaluate its benefits for your gut health.

TYPICAL STARTING DOSE

10 billion CFU

Helps with these Symptoms & Conditions:

Food Allergies

Helps with these Goals:

Fat Loss

Probiotics

Take a probiotic supplement containing 10 billion or more live cultures once daily, preferably with a meal or as directed by the packaging or a healthcare provider.

TYPICAL STARTING DOSE 30 billion CFU

Helps with these Symptoms & Conditions:

Cognitive Decline

Food Allergies

Helps with these Goals:

Fat Loss

Mood

Strength

Streptococcus Thermophilus

Take a supplement containing Streptococcus thermophilus according to the product's label, typically once or twice daily with a glass of water. It is commonly found in probiotic supplements and the exact dosage can vary, so following the manufacturer's guidelines is essential. Continue use as part of your daily routine or as directed by a health professional.

TYPICAL STARTING DOSE 10 billion CFU

Bifidobacterium Animalis Subsp. Lactis

Take a supplement containing Bifidobacterium animalis subsp. lactis at a dose of 10 billion colony-forming units (CFU) daily, with or without food. Joe's preferred strain is *B lactis* HN019 (10B CFU). Continue this regimen daily for at least 2 weeks to 4 weeks to observe potential benefits.

TYPICAL STARTING DOSE 10 billion CFU

Helps with these Symptoms & Conditions:

Bloating

Helps with these Goals:

Fat Loss

Mood

DAO Enzyme

Take a DAO enzyme supplement before each meal, typically starting with one capsule. If symptoms of histamine intolerance persist, you may increase the dose as directed by the product label or your healthcare provider. Continuous daily use is recommended for those with chronic symptoms.

Forskolin

Take 250 mg of a 10% forskolin extract twice a day. For best results, consume it on an empty stomach about 15-30 minutes before meals. This regimen should be followed daily for at least 12 weeks to evaluate its effectiveness.

TYPICAL STARTING DOSE

500 mg

Helps with these Goals:

Fat Loss

Low-Histamine Diet

Exclude high-histamine foods such as aged cheeses, smoked meats, fermented products like sauerkraut and kombucha, alcohol, and preserved foods. Instead, focus on fresh meats, freshly caught fish, eggs, gluten-free grains, and fresh fruits and vegetables. Implement this diet consistently on a daily basis for at least 4 weeks to observe any improvements in symptoms.

Quercetin

Take 250-1000 mg of quercetin supplement daily with a glass of water, preferably with a meal to aid in its absorption.

TYPICAL STARTING DOSE

200 mg

Helps with these Goals:

Strength

Avoid High-Fat Diets

Choose foods low in saturated and trans fats, such as lean meats, fish, nuts, and low-fat dairy. Opt for cooking methods like grilling, steaming, or baking rather than frying. Incorporate this practice into every meal and snack, aiming to consistently maintain a diet low in high fat foods each day.

Gluten-Free Diet

Remove all foods containing wheat, barley, and rye from your diet. This includes obvious sources like bread and pasta, as well as hidden sources in sauces, soups, and processed foods. Check labels for gluten-free certification, and aim to maintain this diet consistently, as even small amounts of gluten can cause symptoms to recur in sensitive individuals.

Helps with these Symptoms & Conditions:

Hashimoto's Disease

Underactive Thyroid